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Abstract

We propose a face recognition approach based on hash-
ing. The approach yields comparable recognition rates with
the random `1 approach [18], which is considered the state-
of-the-art. But our method is much faster: it is up to 150
times faster than [18] on the YaleB dataset. We show that
with hashing, the sparse representation can be recovered
with a high probability because hashing preserves the re-
strictive isometry property. Moreover, we present a theoreti-
cal analysis on the recognition rate of the proposed hashing
approach. Experiments show a very competitive recogni-
tion rate and significant speedup compared with the state-
of-the-art.

1. Introduction
Face recognition often suffers from high dimensionality

of the images as well as the large number of training data.
Typically, face images/features are mapped to a much lower
dimension space (e.g., via down-sample, or linear projec-
tion), in which the important information is hopefully pre-
served. Classification models are then trained on those low-
dimensional features. Recently, Wright et al. [18] pro-
pose a random `1 minimization approach on sparse rep-
resentations, which exploits the fact that the sparse repre-
sentation of the training image indices space helps classi-
fication and is robust to noises and occlusions. However,
the `1 minimization in [18] has a computational complexity
O(d2n3/2), where d is the number of measurements and n
is the size of the training image set. This makes computa-
tion expensive for large-scale datasets. Moreover, a large
dense random matrix with size of d by n has to be gen-
erated beforehand and stored during the entire processing
period. We propose hashing to facilitate face recognition,
which has a complexity only of O(dn). Evaluated on the
YaleB dataset, the proposed method is up to 150 times faster

than the method in [18]. We further show an efficient way
to compute hashing matrix implicitly, so that the procedure
is potentially applicable to online computing, parallel com-
puting and embedded hardware.

In summary, our main contributions include:

• We discover the connection between hashing kernels
and compressed sensing. Existing works on hash ker-
nels [13, 14, 16] use hashing to perform feature reduc-
tion with theoretical guarantees that learning in the re-
duced features space gains much computational power
without any noticeable loss of accuracy. The devia-
tion bound and Rademacher margin bound are inde-
pendent to the line of compressed sensing. Whereas
we show the other side of the coin—hashing can actu-
ally be viewed as a measurement matrix in compressed
sensing, which explains asymptotically no information
loss. Also we provide both a theoretical guarantee and
empirical evidence that recovering the original signal
is possible.

• We apply hashing in the context of compressed sensing
to rapid face recognition due to sparse signal recov-
ery. Our experiments show that the proposed method
achieves competitive accuracies compared with (if not
better than) state-of-the-art in [18, 19]. Yet the pro-
posed hashing with orthogonal matching pursuit is
much faster (up to 150 times) than [18, 19].

• We further present bounds on hashing signal recovery
rates and face recognition rates for the proposed algo-
rithms.

We briefly review the related work in Section 2, and then
introduce two variants of hashing methods for face recog-
nition in Section 3. The theoretical analysis in Section 4
gives justification to our methods, and experimental results
in Section 5 demonstrate the excellence of the proposed
methods in practice.



2. Related work

Given the abundant literature on face recognition, we
only review the work closest to ours.

2.1. Facial features

Inspired by the seminal work of Eigenface using princi-
pal component analysis (PCA), learning a meaningful dis-
tance metric has been extensively studied for face recogni-
tion. These methods try to answer the question that which
features of faces are the most informative or discriminative
for identifying a face from another. Eigenface using PCA,
Fisherface using linear discriminant analysis (LDA), Lapla-
cianface using locality preserving projection (LPP) [9] and
nonnegative matrix factorization all belong to this category.
These methods project the high-dimensional image data
into a low-dimensional feature space. The main justification
is that typically the face space has a much lower dimension
than the image space (represented by the number of pix-
els in an image). The task of recognizing faces can be per-
formed in the lower-dimensional face space. These methods
are equivalent to learn a Mahalanobis distance as discussed
in [17]. Therefore algorithms such as large-margin near-
est neighbor (LMNN) [17] can also be applied. Kernelized
subspace methods such as kernel PCA and kernel LDA have
also been applied for better performances.

2.2. Compressed sensing

Compressive sensing (CS) [6, 4] addresses that if a signal
can be compressible in the sense that it has a sparse repre-
sentation in some basis, then the signal can be reconstructed
from a limited number of measurements. Several recon-
struction approaches have been successfully presented. The
typical algorithm in [4] is to use the so-called `1 minimiza-
tion for an approximation to the ideal non-convex `0 mini-
mization. Yang et al. [19, 18] apply CS to face recognition,
that is, randomly mapping the down-sampled training face
images to a low dimensional space and then using `1 mini-
mization to reconstruct the sparse representation. The per-
son identity can then be predicted via the minimal residual
among all candidates. Unfortunately, `1 minimization for
large matrices is expensive, which restricts the size of the
dataset and the dimensionality of the features.

2.3. Hash kernels

Ganchev and Dredze [7] provide empirical evidence that
using hashing can eliminate alphabet storage and reduce
the number of parameters without severely deteriorate the
performance. In addition, Langford et al. [10] release the
Vowpal Wabbit fast online learning software which uses a
hash representation similar to the one discussed here. Shi
et al. [13] propose a hash kernel to deal with the issue of

computational efficiency by a very simple algorithm: high-
dimensional vectors are compressed by adding up all coor-
dinates which have the same hash value—one only needs to
perform as many calculations as there are nonzero terms in
the vector. The hash kernel can jointly hash both label and
features, thus the memory footprint is essentially indepen-
dent of the number of classes used. Shi et al. [14] further
extend to structured data. Weinberger et al. [16] propose a
unbiased hash kernel which is applied to a large scale appli-
cation of mass personalized spam filtering.

2.4. Connection between hash kernels and com-
pressed sensing

Previous works on hash kernels use hashing to perform
feature reduction with a theoretical guarantee that learn-
ing in the reduced features space gains much computational
power without any noticeable loss of accuracy. The devia-
tion bound and Rademacher bound show that hash kernels
have no information loss asymptotically due to the internal
feature redundancy.

Alternatively, we can view hashing as a measurement
matrix (see Section 4.2) in compressed sensing. We pro-
vide both theoretical guarantees in Section 4 and empirical
results in Section 5 to show that recovering the original sig-
nal is possible. Thus hash kernels compress the original
signal/feature in a recoverable way. This explains why it
works well asymptotically in the context of [13, 14, 16].

3. Hashing for face recognition
We show in this section that hashing can be applied to

face recognition.

3.1. Algorithms

Consider face recognition with n frontal training face
images collected from K ∈ N subjects. Let nk denote
the number of training images (xi, ci) with ci = k, thus
n =

∑K
k=1 nk. Without loss of generality, we assume that

all the data have been sorted according to their labels and
then we collect all the vectors in a single matrix A with m
rows and n columns, given by

A = [x1, ...,xn1 , ...,xn] ∈ Rm,n. (1)

As in [19, 18], we assume that any test image lies in
the subspace spanned by the training images belonging to
the same person. That is for any test image x, without
knowing its label information, we assume that there exists
α = (α1, α2, ..., αn) such that

x = Aα. (2)

It is easy to see that if each subject has the number of im-
ages in the dataset, then the α for each subject has max-
imally 1/K portion of nonzero entries. In practice, α is



Algorithm 1 Hashing with `1
Input: a image matrix A for K subjects, a test image
x ∈ Rm and an error tolerance ε.
Compute x̃ and Φ.
Solve the convex optimization problem

min ‖α‖`1 subject to ‖x̃−Φα‖`2 ≤ ε. (6)

Compute the residuals rk(x) = ||x̃ − Φαk(x)||`2 for
k = 1, . . . ,K, where αk is the subvector consisting of
the components of α corresponding to the basis of class
k.
Output: identity c∗ = argmink rk(x).

more sparse since often only a small subset of images from
the same subjects have nonzero coefficients.

Yang et al. [19] and Wright et al. [18] use a random
matrix R ∈ Rd,m to map Aα, where d � m, and seek for
α by following `1 minimization:

min
α∈Rn

‖x̃− Ãα‖2`2 + λ‖α‖`1 , (3)

where Ã := RA, x̃ := Rx and λ is the regularizer con-
trolling the sparsity of α. However, they did not provide
a theoretical result on the reconstruction rate and the face
recognition rate. We show both of our algorithm in Sec-
tion 4.

3.2. Hashing with `1

Computing R directly can be inefficient, therefore we
propose hashing to facilitate face recognition. Denote by
hs(j, d) a hash function hs : N → {1, . . . , d} uniformly,
where s ∈ {1, . . . , S} is the seed. Different seeds give dif-
ferent hash functions.

Given hs(j, d), the hash matrix H = (Hij) is defined as

Hij :=
{

2hs(j, 2)− 3, hs(j, d) = i,∀s ∈ {1, . . . , S}
0, otherwise.

(4)

Apparently, Hij ∈ {0,±1}. Equally likely ±1 result in an
unbiased estimator (see [16]). Let Φ := H A = (Φij) ∈
Rd,n. We look for α by

min ‖α‖`1 subject to ‖x̃−Φα‖`2 ≤ ε, (5)

where x̃ = H x. The hashing with `1 is illustrated in Algo-
rithm 1. It is known that the `1 has complexity O(d2n3/2).

3.3. Hashing with orthogonal matching pursuit

Tropp and Gilbert [15] propose Orthogonal Matching
Pursuit (OMP) which is faster than `1 minimization and but
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Figure 1. Demonstration of the recognition procedure of
Hashface+`1. (a) is the test face; (b) is the training faces cor-
responding to the 10 largest weighted entries in α, the absolute
value of their weights are shown on the images in red.
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Figure 2. Demonstration of a hash matrix. The area with green
color means the entry’s value is 0, brown indicates value−1 while
blue indicates 1.

requires more measurements than `1 does for achieving the
same precision. Equipped with hashing, the hashing OMP
(see Algorithm 2) is much faster than random `1, random
OMP, and hashing `1 without significantly loss of accuracy.
It is known that OMP has complexityO(dn). Hashing OMP
is faster than random OMP due to sparsity of hash matrix H
(see a sparse H in Figure 2).

Algorithm 2 Hashing with OMP
Input: a image matrix A for K subjects, a test image
x ∈ Rm.
Compute x̃ and Φ.
Get α via OMP procedure

α = OMP(x̃,Φ) (7)

Compute the residuals rk(x) = ||x̃ − Φαk(x)||`2 for
k = 1, . . . ,K, where αk is the subvector consisting of
the components of α corresponding to the basis of class
k.
Output: identity c∗ = argmink rk(x).

3.4. Efficiency on Computation and Memory Usage

For random `1, the random matrix R needs to be com-
puted beforehand and stored throughout the entire routine.
When training set is large or the feature dimension is high,
computing and storing R are expensive especially for a



dense R. We will show now with hashing, H is no longer
needed to be computed beforehand explicitly. For exam-
ple Φ and x̃ can be directly computed as follows without
computing H.

∀i = 1, . . . , d, j = 1, . . . , n

Φij =
∑

1≤s≤S

( ∑
1≤t≤m;hs(t,d)=i

Ajtξst

)
, (8)

where

ξst =
{

1, hs(t, 2) = 2
−1, otherwise.

∀i = 1, . . . , d x̃i =
∑

1≤s≤S

( ∑
1≤j≤m;hs(j,d)=i

yjξsj

)
. (9)

It means for even very large image set, hashing with OMP
can still be implemented on hardware with very limited
memory.

4. Analysis
In this section, we show that hashing can be used for

signal recovery, which is principle behind the application to
face recognition. We further give a lower bound on its face
recognition rate under some mild assumptions.

4.1. Restricted isometry property and signal recov-
ery

A n-dimensional real valued signal is called η-sparse if
it has at most η many nonzero components. The following
Restricted Isometry Property (RIP) [5, 3] provides a guar-
antee for embedding high dimensional signal to a lower di-
mensional space without suffering a great distortion.

Definition 1 (Restricted Isometry Property) Let Φ be an
m×nmatrix and let η < n be an integer. Suppose that there
exists a constant β such that, for every m× η submatrix Φη
of Φ and for every vector x,

(1− ε)‖x‖2`2 ≤ ‖Φηx‖
2
`2 ≤ (1 + ε)‖x‖2`2 . (10)

Then, the matrix Φ is said to satisfy the η-restricted isometry
property with restricted isometry constant ε.

Baraniuk et al. [2] proves the RIP holds with high probabil-
ity for some random matrices by the well-known Johnson-
Lindenstrauss Lemma. With RIP, it is possible to recon-
struct the original sparse signal by randomly combining the
entries as the following theorem.

Theorem 4.1 (Recovery via Random Map [15, 5, 12])
For any η-sparse signal α ∈ Rn and two constants
z1, z2 > 0, let m ≥ z1η log(n/η), and draw m row vectors

r1, . . . , rm independently from the standard Gaussian
distribution on Rn. Denote the stacked vectors {ri}mi=1

as the matrix R ∈ Rm,n and take m measurements
xi = 〈ri,α〉 , i = 1, . . . ,m , i.e., x = R α. Then
with probability at least 1 − e−z2m, the signal α can be
recovered via

α∗ = argmin
α∈Rn

‖x−Rα‖2`2 + λ‖α‖`1 . (11)

The condition on m in the theorem above comes from RIP
condition. This immediately leads to following corollary
when recovery is on a specific basis A.

Corollary 4.2 (Recovery on a Specific Basis) For any η-
sparse signal α ∈ Rn and two constants z1, z2 > 0,
let d ≥ z1η log(n/η), and draw d row vectors r1, . . . , rd
independently from the standard Gaussian distribution on
Rm. Denote the stacked vectors {ri}di=1 as the matrix
R ∈ Rd,m. For any matrix A ∈ Rm,n with unit length
columns, with probability at least 1 − e−z2d, the signal α
can be recovered via

α∗ = argmin
α∈Rn

‖R x− (R A)α‖2`2 + λ‖α‖`1 . (12)

Proof Let Aj , j = 1, . . . , n denote the j-th column vec-
tor of the matrix A and let Ã := R A, i.e., the row vec-
tors Ãi =

(
〈ri,A1〉 , . . . , 〈ri,An〉

)
for (i = 1, . . . , d).

Note that the inner product 〈ri,Aj〉 =
∑m
k=1 ri,k Ak,j is

still a random variable drawn from Gaussian distribution
N(0,

∑m
k=1 A2

k,j). Hence {Ãi}di=1 are random vectors in-
dependently drawn from the Gaussian distribution in Rm.
Corollary 4.2 follows Theorem 4.1.

4.2. Recovery with hashing

Can one reconstruct the signal via hashing rather than
Gaussian random mapping? The answer is affirmative.
Achlioptas [1] constructs an embedding with the prop-
erty that all elements of the projection matrix U belong
in {±1, 0} and shows such embedding has a Johnson-
Lindenstrauss Lemma type of distance preservation prop-
erty. Due to uniformity, a hashing matrix H with S = d is
such a projection matrix U ignoring the scaling. Since dis-
tance preservation property implies RIP [2], signal recovery
still holds by replacing gaussian matrix with U, and it leads
to the corollary below.

Corollary 4.3 (Hashing `1 Recovery) For any η-sparse
signal α ∈ Rn and two constants z1, z2 > 0 depending
on ε, given hash matrix H, let d ≥ z1η log(n/η), for any
matrix A ∈ Rm,n, with probability at least 1 − eO(−z2d),
the signal α can be recovered via

α∗ = argmin
α∈Rn

‖H x− (H A)α‖2`2 + λ‖α‖`1 . (13)



Here the bigO notation is to take into account of the scaling.
Tropp and Gilbert [15] show that the OMP recovery the-

orem holds for all admissible measurement matrices such
as Gaussian random matrix and Bernoulli random matrix.
Applying OMP to hashing matrix H, we get following the-
orem:

Theorem 4.4 (Hashing OMP Recovery) For any η-
sparse signal α ∈ Rn and confidence δ > 0, given
hash matrix H, let d ≥ 16η2 log(n/δ), for any ma-
trix A ∈ Rm,n, take the measurements such that
H x = (H A)α. Then with probability at least 1 − δ, the
signal α can be recovered via Algorithm 2.

Proof Admissibility mainly relies on the coherence statis-
tic µ := maxj<k | 〈Rj ,Rk〉 |. In a hash matrix H,
{−1,+1} are equally likely to appear so E[〈Hj ,Hk〉] = 0.
By hoeffding inequality, P (| 〈Hj ,Hk〉 > ε|) ≤ 2e−εN/2.
Union bound argument further gives bound on P (µ) < d
of H as of Bernoulli random matrix. This then leads to the
same bound on the smallest singular value. Also we know
the columns of H with multiple hash functions are inde-
pendent and normalization only changes the scale, hence H
is admissible. Admissibility implies reconstruction, so the
theorem holds.

4.3. Recognition rates

A commonly used assumption is that any test face image
can be represented as a weighted sum of face images be-
longing to the same person, which has been used in [18, 19].
Ideally, once we achieve the exact weights, the classifica-
tion should be perfect. However, because the similarity of
human face appearance and noise, it is no longer true. So
we propose a weakened assumption below.

Assumption 2 There exists a high dimension representa-
tion in the training face images indices space, in which
the classification can be conducted with recognition rate at
least q.

The following theorem provides bounds on recognition
rate for any test image via hashing.

Theorem 4.5 (Recognition Rate via Hashing) The reco-
gnition rates via Algorithm 1 and 2 are, at least (1 −
eO(−z2d))q, and (1−δ)q, respectively, under Assumption 2.

Proof We know that with probability at least 1− eO(−z2d),
the signal can be recovered via Corollary 4.3. With As-
sumption 2, we know that even the eO(−z2d) portion of not-
perfectly-recovered signals are all misclassified, the classi-
fication accuracy is still greater or equal to (1−eO(−z2d))q.
Similarly for Algorithm 2.

Note that the bound in above theorem is possible be
further tighten by salvaging the portion of not-perfectly-
recovered signals for classification. Indeed, predictions on
those signals are usually not complete wrong.

5. Experiments

To compare the proposed hashing approaches with ran-
dom `1 [19, 18], we use the same databases, namely, the
Extended YaleB and AR as Wright et al. used in [18].
The Extended YaleB database [8] contains 2, 414 frontal-
face images from 38 individuals. The cropped and normal-
ized 192 × 168 face images were captured under various
laboratory-controlled lighting conditions. Each subject has
62 to 64 images. Thus we randomly select 32, 15, 15 of
them (no repetition) as the training, validation and testing
sets. The AR database consists of over 4, 000 front images
for 126 individuals. Each individual has 26 images. The
pictures of each individual were taken in two different days
[11]. Unlike Extended YaleB, the faces in AR contain more
variations such as illumination change, expressions and fa-
cial disguises. 100 subjects (50 male and 50 female) are
selected randomly. And for each individual, 13, 7 and 6
images (since 26 images in total for each individual) are
chosen as training, validation and testing set respectively.

5.1. Comparisons on accuracy and efficiency

We run the experiment 10 times on each method and re-
port the average accuracy with the standard deviations as
well as the running time. In each round we run the exper-
iment, the databases are split according to above scheme
and different algorithms are performed on the same training,
validation and test data set. The number of hash function
L is tuned via model selection assessed on the validation
set. Given a feature dimension dim in the reduced feature
space, L is the rounded up integer of u× Dim. For hash-
ing `1 u ∈ {0.02, 0.04, 0.06, ...0.38, 0.40} and for hashing
OMP `1 u ∈ {0.05, 0.10, 0.15, ...0.95, 1.00}. The error tol-
erance ε for random `1 is fixed to 0.05 which is identical to
the value adopted in [19].

We evaluate the our methods and state-of-arts on Yale B
and AR database shown in Tab 1. The best accuracies are
highlighted in bold. As we can see, when Dim = 300, hash-
ing `1 gets the best accuracies on both datasets. An exam-
ple is given in Fig 3. Fig 3 (d) (e) show that the hashing `1
weight vector is more sparse than random `1. We conjecture
that the sparsity is a distinct pattern for classification, which
may help to improve the performance as observed in [14].
Overall, hashing has competitive accuracy with random `1.

Hashing OMP is significantly faster than random `1
(from 30 to 150 times shown in Tab 2). This is further veri-
fied in Fig 4, which shows that as the feature dimensionality
increases, running time of the hashing OMP is almost con-



Dim-25 Dim-50 Dim-100 Dim-200 Dim-300

AR

Hash+OMP 0.572± 0.074 0.658± 0.063 0.778± 0.066 0.937± 0.032 0.969± 0.019
Random+OMP 0.563± 0.070 0.689± 0.077 0.784± 0.060 0.835± 0.036 0.908± 0.034

Eigen+OMP 0.435± 0.132 0.449± 0.131 0.449± 0.112 0.606± 0.068 0.671± 0.040
Hash+`1 0.660± 0.051 0.727± 0.064 0.915± 0.037 0.961± 0.029 0.985± 0.013

Random+`1 0.653± 0.068 0.855± 0.047 0.915± 0.042 0.929± 0.028 0.958± 0.016
Eigen+`1 0.627± 0.137 0.705± 0.094 0.751± 0.061 0.758± 0.035 0.806± 0.050

Eigen+KNN 0.452± 0.102 0.500± 0.102 0.537± 0.101 0.555± 0.097 0.558± 0.096
Fisher+KNN 0.575± 0.060 0.740± 0.045 0.920± 0.026 0.977± 0.011 0.981± 0.011
Eigen+SVM 0.758± 0.063 0.903± 0.048 0.959± 0.021 0.976± 0.017 0.979± 0.011
Fisher+SVM 0.760± 0.054 0.896± 0.043 0.953± 0.020 0.979± 0.013 0.980± 0.012

YaleB

Hash+OMP 0.722± 0.056 0.806± 0.057 0.856± 0.050 0.939± 0.022 0.964± 0.016
Random+OMP 0.704± 0.065 0.821± 0.059 0.908± 0.039 0.945± 0.033 0.944± 0.029

Eigen+OMP 0.094± 0.033 0.289± 0.075 0.669± 0.078 0.882± 0.053 0.911± 0.048
Hash+`1 0.853± 0.053 0.899± 0.030 0.951± 0.021 0.977± 0.017 0.982± 0.013

Random+`1 0.844± 0.058 0.928± 0.036 0.966± 0.018 0.980± 0.017 0.979± 0.016
Eigen+`1 0.648± 0.102 0.822± 0.072 0.911± 0.049 0.936± 0.037 0.945± 0.036

Eigen+KNN 0.459± 0.080 0.589± 0.101 0.662± 0.109 0.702± 0.100 0.714± 0.096
Fisher+KNN 0.759± 0.079 0.891± 0.050 0.920± 0.038 0.948± 0.029 0.954± 0.030
Eigen+SVM 0.793± 0.081 0.890± 0.063 0.919± 0.041 0.940± 0.036 0.953± 0.029
Fisher+SVM 0.790± 0.064 0.880± 0.068 0.913± 0.040 0.939± 0.035 0.948± 0.031

Table 1. Comparison on accuracy for Hashface+OMP, Randomface+`1 and Eigenface+`1. On both datasets, Hash+`1 achieves the best
classification accuracy. When the dimensionality is low, sparse representation based algorithms do not perform as well as SVM.

Dim-25 Dim-50 Dim-100 Dim-200 Dim-300

AR

Hash+OMP 4.45± 0.08 11.55± 0.22 24.8± 0.17 78.25± 0.41 101.15± 1.34
Random+OMP 3.3± 0.07 12.05± 0.23 80.25± 0.93 812.55± 0.74 1323.45± 2.00

Eigen+OMP 3.55± 0.09 12.45± 0.24 77.25± 0.32 299.55± 1.54 422.1± 2.03
Hash+`1 359.1± 1.39 714.55± 2.96 1740.5± 12.69 6125.85± 99.22 15718.9± 290.25

Random+`1 367.25± 0.96 814.35± 5.44 2276.95± 10.28 11266± 73.18 31731± 292.63
Eigen+`1 334.85± 1.78 751.95± 7.10 2637.9± 37.68 8758.3± 132.26 19632.9± 477.55

YaleB

Hash+OMP 3.65± 0.05 10.05± 0.02 67.4± 0.80 61.45± 0.34 138.05± 0.24
Random+OMP 3.4± 0.05 10.75± 0.18 74.3± 0.11 944.25± 0.53 2944.45± 2.90

Eigen+OMP 3.65± 0.05 10.8± 0.19 75± 0.30 190.65± 0.49 291.35± 0.78
Hash+`1 335.5± 1.83 724.45± 2.53 1713.3± 14.69 5191.9± 120.27 9536.8± 311.48

Random+`1 329.4± 2.48 823.25± 5.63 2401± 19.56 8655.6± 71.23 21887.8± 164.97
Eigen+`1 330.8± 2.36 742.55± 5.42 2006.6± 38.53 4621.65± 143.30 8444.65± 273.76

Table 2. Comparison on running time(ms) for Hashface+OMP, Randomface+`1 and Eigenface+`1. Hash+OMP is much faster than other
methods.

stant whereas that of random `1 increases dramatically. In
real world application, the speed of algorithms is a big is-
sue. Hence we further compare hashing OMP with random
`1 by restricting their running time to the same level. This
way, hashing OMP gets much better accuracies than ran-
dom `1 shown in Tab 3. In fact, one may further improve
the hashing OMP accuracy by increasing the feature dimen-
sionality, for Fig 4 suggests that the running time curse for
hashing OMP is almost flat.

5.2. Predicting via residuals or α directly?

Algorithm 1 uses the residuals to predict the label. Alter-
natively we can learn a classifier on the sparse α directly. To
investigate it, we estimated α via Algorithm 1 (i.e., `1 mini-
mization) on the test set and the validation set of AR dataset.
Then we split the union of the two sets into 10 folds. We ran
10 folds cross-validation (8 for training, 1 for testing, and 1
for validation) with SVM. We used both the original α and
the normalized one denoted as α[0,1], which is normalized
to [0, 1]. Because α has both positive and negative entries,
the normalization step introduces many nonzero entries to



Running time(ms)
Hash+OMP 10.05± 0.020 46.65± 2.394 85.4± 3.891 340.95± 4.080
Random+`1 NA 58.35± 1.152 97.15± 7.926 329.4± 2.480

Accuracy
Hash+OMP 0.658± 0.063 0.687± 0.060 0.835± 0.037 0.998± 0.034
Random+`1 NA 0.0571± 0.010 0.2± 0.047 0.653± 0.068

Dimension
Hash+OMP 50 85 180 1000
Random+`1 NA 5 10 25

Table 3. Comparison on accuracies given running time constraint for Hashface+OMP and Randomface+`1 on AR. “Dimension” shows
the dimensions under which the two manners could achieve similar running speed. “Running time” shows the real running time that should
be similar to each other for a certain running speed. NA means impossible to achieve that speed.
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0.56246 0.26967 0.054939 0.025325 0.024567

0.023567 0.022669 0.020438 0.019944 0.018474

(b)

0.54452 0.18816 0.088323 0.063312 0.051093

0.048531 0.010421 0.00061722 1.6239e−06 1.0512e−07
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Figure 3. The comparison of the recognition procedure of Hashing + `1 and Random +`1 on YaleB. (a) is the test face; (b)&(c) are the
top 10 weighted training faces for random `1 and hashing `1 respectively. The absolute value of the weights are shown in red (view in
color); (d)&(e) are the bar charts corresponding to the absolute value of top 100 largest weighted entries in the weight α for random `1 and
hashing `1 respectively.

α[0,1]. As we can see in Table 4, when Dim = 50, SVM
gets better result than hashface OMP and `1. When Dim
≥ 100 hashface OMP and `1 beat SVM. The experiment
suggests that, when the feature dimensionality is low (e.g.
≤ 50), predicting via α is a good idea; when the feature
dimensionality is high, predicting via residuals is better.

6. Conclusion
We have proposed a new face recognition methodology

with hashing, which speeds up the state-of-the-art in [18] by
up to 150 times, with comparable recognition rates. Both

theoretical analysis and experiments justify the excellence
of the proposed method.
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Dim 50 Dim 100 Dim 200 Dim 300
Accuracy on α 0.865 ± 0.006 0.876 ±0.010 0.875 ± 0.007 0.835 ± 0.009
Accuracy on α[0,1] 0.853 ± 0.006 0.877 ± 0,011 0.878± 0.007 0.849 ± 0.010

Table 4. Test accuracy via predicting on α on AR dataset with 10 fold cross-validation.
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Figure 4. The running time curves of Hashing+OMP and Random
`1 on AR. The horizontal axis represents the dimensionality and
the vertical axis is the running time in ms.
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